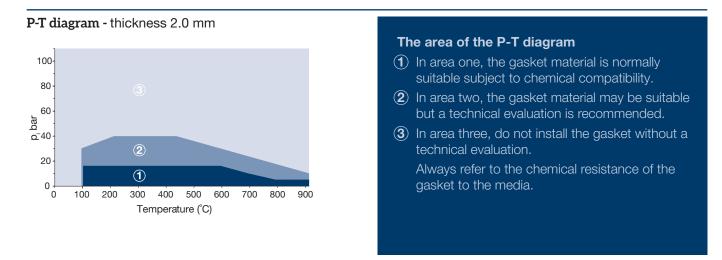


KLINGER[®]milam PSS engineered for highly demanding operating conditions.

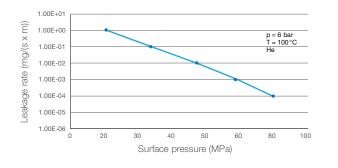
Featuring a high-temperature Mica-based material with perforated stainless steel reinforcement, KLINGER® milam PSS gaskets are specifically designed for hot, dry gas applications at up to 900 °C and 5 bar. Their outstanding chemical resistance also makes them suitable for a wide range of other applications. This product is also available as Milam H, a high-quality homogeneous mica sheet.

Basis composition	Mica-based sealing material with a perforated 0.1 mm thick stainless steel reinforcement.				
Color	Brown				
Certificates	German Lloyd				

Sheet size	1000 x 1200 mm
Thickness	PSS 130 = 1.3 mm, PSS 200 = 2.0 mm, PSS 300 = 3.2 mm
Tolerances	
Thickness:	±10%
Length:	± 5 mm
0	


Industry

General industry / Chemical / Oil & Gas / Energy / Pulp & Paper / Marine / Automotive


		D00 400	DOO 000	BOO 000	
		PSS 130	PSS 200	PSS 300	
Compressibility ASTM F 36 J	%	12 - 20	15 - 23	18 - 26	
Recovery ASTM F 36 J	%	30 - 45	32 - 42	25 - 38	
Stress relaxation DIN 52913, 50 MPa, 16 h/300°C	MPa	33	33	30	
Ignition loss	%	<5	<5	<5	
Sealability for nitrogen at 30 MPa and 6 bar,					
temperature within 100 to 400°C	ml/min	0.20	0.20	1.0	
(Sample size 90 x 50 mm) max					
Thickness increase ASTM F 146, Oil IRM 903: 5 h/150°C	%	12	12	12	
Weight increase ASTM F 146, Oil IRM 903: 5 h/150°C	%	26	26	26	
Max. gasket load	MPa	100	80	80	
Density	g/cm3	2.1	2.1	2.1	
Max. temperature	°C	900	900	900	
Thickness	mm	1.3	2.0	3.2	
Number of stainless steel reinforcements		1	1	1	
Material Tanged stainless steel		ASI 316 (L)			

TECHNICAL DATA - Typical values for different thicknesses

Tightness performance

The tightness performance graph

The graph shows the required stress at assembling to seal a certain tightness class. The determination of the graph is based on EN13555 test procedure with Helium at 100 °C. The sloping curve indicates the ability of the gasket to increase tightness with raising gasket

Chemical resistance chart

Simplified overview of the chemical resistance depending on the most important groups of raw materials:

KLINGER [®] milam PSS						A: small or no attack		B: weal	k till moderate att	ack C:	C: strong attack	
Paraffinic hydrocarbon	Motor fuel	Aromates	Chlorinated hydrocarbon fluids	Motor oil	Mineral lubricants	Alcohol	Ketone	Ester	Water	Acid (diluted)	Base (diluted)	
Α	Α	Α	В	Α	Α	Α	Α	Α	Α	В	В	

For more information on chemical resistance please visit www.klinger-ag.ch.

All information is based on years of experience in production and operation of sealing elements. However, in view of the wide variety of possible installation and operating conditions one cannot draw final conclusions in all application cases regarding the behaviour in gasket joint. The data may not, therefore, be used to support any warranty claims. This edition cancels all previous issues. Subject to change without notice.